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New exact solutions to the time-dependent Lorentz gas Boltzmann equation are 
presented for two classes of nonequilibrium initial value problems: the decay of 
localized disturbances and the response to applied electric fields. These exact 
results are used to gain some insight into the crossover of the nonequilibrium 
state from the early-time kinetic regime to the late-time hydrodynamic regime. 
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1. I N T R O D U C T I O N  

In many-body  systems t ranspor t  or kinetic equations describing the 
behavior  of the one-particle distribution function are often the centerpiece 
in theoretical studies of nonequil ibrium phenomena  in systems as diverse as 
ordinary gases, neutron chain reactors, quan tum liquids, and Q C D  
plasmas, to name just a few. (1'2) Transpor t  equations are also often the 
starting point  in at tempts to attain one of the principal goals of statistical 
mechanics, namely an explanat ion of the macroscopic  properties of matter  
f rom a microscopic description. In most  cases useful analytical solutions to 
these equations remain out  of reach, primarily due to the presence of a 
collision integral that  accounts  for the scattering of the particles. On  the 
other  hand, the few cases where exact results can be obtained serve as a 
touchstone for one's ideas about  t ranspor t  phenomena  in general. 
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Even solving these equations numerically is difficult, (3) especially for 
the class of time-dependent initial-value transport problems considered 
here: the approach to hydrodynamics following a pulsed, localized distur- 
bance and in the case of a charged system the response to a turned on, 
applied electric field. For example, during the decay of a localized perturba- 
tion there will be wavefronts propagating through the system, and numeri- 
cal schemes are hard-pressed to give accurate results in regions near the 
wavefront where the distribution function is varying rapidly. The 
wavefronts should only play an important role for times t < ~ [-the mean 
free time (MFT) for scattering] following the detonation of such a localized 
disturbance, for at such times the system is in the so-called kinetic regime 
where a diffusive or hydrodynamic description, which coarse grains over 
processes at fine time and length scales, breaks down completely. In this 
regime a solution to the full kinetic equation is essential. On the other 
hand, for times t > ~ the transport transients have died out, and the system 
can be well described by the more tractable macroscopic hydrodynamic 
equations. There are important physical problems in, for example, such 
fields as quantum liquids, (4) semiconductors, (5~ high-energy heavy-ion 
collisions, (61 and stellar astrophysics, (7) where getting a handle on the 
behavior of the system in the difficult kinetic regime following a pulsed, 
localized perturbation is of great interest. 

Another important class of nonequilibrium problems (especially in 
semiconductor physics) is concerned with the response of a gas of charged 
carriers to an applied external electric field. The purpose of this paper is to 
study these two classes of important nonequilibrium problems in a model 
system simple enough so that exact results can be obtained, but 
sophisticated enough so that perhaps some light can be shed on similiar 
phenomena in more realistic systems. 

The model studied here is the 3D Lorentz gas, a system of noninterac- 
ting particles scattering (elastically) off of an infinite random array of fixed 
spherical scatterers. (L8'9) This model is closely allied with random walk 
problems and is a classic in theoretical physics. It has been useful in 
elucidating the nature of contracted (hydrodynamic) descriptions of trans- 
port processes (the Chapman-Enskog expansion) and in helping to resolve 
the famous Hilbert paradox. Because the Boltzmann equation (BE) for the 
Lorentz gas contains a true collision integral, one hopes that many features 
of transport in this relatively simple model system are in some sense generic 
(see refs. 8 and 9 and Section 4 below). One justification for exploring the 
details of such a simplified model is that transport properties seem to 
depend in many ways on the existence of collisions, not their exact nature. 

It is important to keep in mind that the BE for a dilute interacting gas 
contains two-body scattering and is therefore nonlinear. Although the 
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results for the (linear) Lorentz gas BE cannot be used to say much about 
the nonlinear features of the dilute gas problem, they may be able to be 
applied to the linearized version of the dilute gas BE. Unfortunately, the 
two linear BEs are not exactly the same, and the differences make a direct 
carryover of the Lorentz gas results somewhat problematic (see, e.g., 
pp. 174 and 311 of ref. 1). 

Strictly speaking, the Boltzmann equation itself is only valid in the so- 
called Boltzmann Grad limit, where the density of scatterers p -+ oc while 
the radius R ~ 0 in such a way that the mean free path ~ (pR2) - 1 __, const. 
In this limit the scattering becomes a Markovian process, which allows one 
to "derive" the Boltzmann equation. In general, the scattering is non- 
Markovian, and the memory effects that follow are studied in molecular 
dynamical simulations. 

A special feature of the problems considered here is that, due to the 
absence of inelastic scattering, there is no steady-state solution or true 
approach to equilibrium (besides the spreading out of an initially localized 
disturbance), which renders inapplicable familiar approximations such as 
the relaxation-time approximation (RTA). 

The localized disturbance problem is treated first. In Section 2, with 
the assumption of plane symmetry, exact closed-form expressions (i.e., in 
terms of elementary functions or relatively simple integrals of elementary 
functions) for the initial-value Green's functions (GFs) are derived for the 
Lorentz gas Boltzmann equation. Then in Section 3, by making use of these 
solutions, I construct density GFs for the more physically interesting 
initial-value problems with spherical symmetry; these GFs allow one to 
find the density of particles due to an arbitrary, spherically symmetric 
source turned on at time t = to. The spherically symmetric solutions are 
then evaluated for some representative initial conditions, with special atten- 
tion paid to the crossover from quasiballistic transport at early times to the 
diffusive or hydrodynamic behavior at long times. (Non-spherically-sym- 
metric 3D problems are more difficult to solve and are not dealt with here). 
At very early times t ~  r (collisionless, or Knudsen, regime) the particles 
are more or less freely streaming (since very few collisions have taken 
place) and the disturbance moves out ballistically with the size of the dis- 
turbance oct, while, as mentioned above, at long times a hydrodynamic 
description is appropriate with the disturbance moving out diffusively 

oc x~-. It is at intermediate times t < r that the behavior of the system is 
the most difficult to pin down, and a study of this kinetic regime forms the 
central focus of this paper. My goal is to see in detail how in this model 
problem hydrodynamics comes out of the kinetic equation. 

These spherically symmetric intiat-value problems in the Lorentz gas 
are illuminating examples of a more general transport problem common in 
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the real world that can be formulated as follows: Describe the response of 
a large system (initially in uniform global equilibrium) to a localized 
disturbance (confined, say, to some region around the origin) triggered at 
time t = to. In Section 4 the exact results derived for the Lorentz gas serve 
as the basis for a discussion of this general nonequilibrium statistical 
mechanics problem. 

In Section 5 it is shown that with some restrictions the problem of a 
homogeneous charged gas in the presence of an applied electric field can be 
mapped onto the localized disturbance problem. The exact solutions for the 
localized disturbance problem can then be used to follow the heating of the 
gas and the growth of a current following the turning on of the field (the 
gas is assumed to be in global equilibrium before the field is turned on). 

Exact formal solutions to the fundamental time-dependent transport 
problems considered here have been known for a long time, (8-~4) but due 
to their mathematical complexity and opacity it seemed impossible, or at 
least extremely difficult, to evaluate them numerically and therebye flesh 
out the qualitatively known features of the solutions. Accurate numerical 
results were not obtained until an exact solution in the form of an infinite 
sum (yon Neumann or multiple collision expansion) was derived. (~s'16) The 
derivation of the new solutions given here is not only simpler and more 
straightforward than previous calculations, but the results are more 
intuitively appealing and mathematically transparent and also more easily 
evaluated numerically. Furthermore, in contrast to the multiple-collision 
solutions, the present exact results allow a clean separation between the 
transport transient and the asymptotic (hydrodynamic) parts of the 
solution. 

The original motivation for this work was a conjecture by Leggett (4~ 
that certain nonequilibrium structures conducive to the nucleation of the 
superfluid 3He B-phase might develop following the intense heating of a 
localized region in a Fermi liquid. In an effort to test this conjecture, I 
attempted ~7~ to generalize Brooker and Syke's (~8/ work on the decay of a 
homogeneous disturbance in a Fermi liquid to the general inhomogeneous 
case. The extreme difficulty I encountered led me to consider the simplified 
but still rich Lorentz gas model that I study here. 

The decay of disturbances in a dilute gas is described by a nonlinear 
Boltzmann equation, and finding exact solutions even in the homogeneous 
case is extremely difficult and is only possible for some artificial model 
problems (see ref. 19 for a review). The inhomogeneous problem is much 
more difficult (~ga) ("The main challenge remains the general solution of the 
initial value problem for the spatially non-uniform nonlinear Boltzmann 
equations, or perhaps only for simplified model of it, enabling us to discuss 
hydrodynamic phenomena ''(19)) and I believe the work presented here on 
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the approach to hydrodynamics in a nonuniform Lorentz gas is a first step 
in the right direction. Exact solutions of Boltzmann equations containing 
true collision integrals are extremely rare, and as far as I know the exact 
results obtained for the decay of localized disturbances in a Lorentz gas are 
the only exact and numerically tractable results known for this type of 
transport problem. These results should therefore be of mathematical as 
well as physical interest in that many of the qualitative features of these 
solutions should be present in the more difficult problems discussed above. 

In its approach the present work is very much in the spirit of Landau's 
classic paper on solving the Vlasov equation, (2~ and it is remarkable that 
the integral transform techniques employed here allow such a complete and 
numerically tractable solution to the Lorentz gas Boltzmann equation, 
something which has almost inexplicably gone unnoticed for a long time 
despite the large amount of work devoted to this problem. More back- 
ground information, a more in-depth discussion of the methods used here, 
and a small part of the results have been described in a previous paper, (21) 
to which I will refer to fill in some of the technical details. In this previous 
paper exact expressions for the GFs were obtained, but most of these 
expressions were complicated by the presence of compound integrations, 
something which is entirely avoided here. 

2. PLANE S Y M M E T R Y  SOLUTIONS TO THE LORENTZ GAS 
B O L T Z M A N N  EQUATION 

The (linear) Boltzmann equation governing the behavior of the one- 
particle distribution function ~(r, ~, t) (the phase space density of particles) 
for a Lorentz gas can be written as 

c30 add ^' 
+ W, + = f 0', t) + S(r, 0, t) 

8-7 
1) 

where ~ is the unit vector in the direction of the velocity, a is the scattering 
cross section, v is the (constant) speed of the particles, and S is a source 
term. In Eq. (1) the vaO term accounts for the scattering out of the state 
0 at the space-time point (r, t), while the integral term provides for the 
population of the state 0 due to the scattering of particles from state 0' ~ P. 
The only conserved quantity is the total number of particles, implying that 
the density n(r, t ) = f  dO O(r, 0, t) is the only hydrodynamic moment for 
this system. The MFT that sets the time scale for collision processes is 
defined by ~ ~ lira. 

Since only elastic scattering processes are present in Eq. (i), the 
magnitude of the momentum (p = my) enters only as a parameter, and the 

822/58/5-6-7 
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dependence of ~ on p is suppressed (the states with different energies 
E = p2/2m are completely decoupled). Any function depending only on p is 
trivially a solution to the homogeneous version of Eq. (1) ( S - 0 ) ;  thus, one 
can imagine that the gas is in some thermal equilibrium state Oo(P) for 
t < 0 after which it is disturbed, so that the full distribution function can be 
written as gt(r, p, ~, t) = ~o(P) + ~(r, p, ~, t). 

The simple RTA to the Boltzmann equation can be obtained by 
neglecting the integral term in Eq. (1); the BE then reduces to 

~ +  vO. V~, + va~ = +S(r, ~, t) (:2) 

which can easily be solved for any initial-value problem 
~(r, p, [~, t = 0) = So(r, p, ~) to get O(r, p, ~, t) = e t/~So(r - vtO, p, ~). This 
solution implies that the particles simply stream freely outward, all the 
while getting absorbed on a time scale ~. We shall see below just how poor 
the RTA is for the type of initial-value problems considered here. 

Since Eq. (1) is very difficult to solve for an arbitrarily distributed 
source, some simplifying restrictions will be imposed. If plane symmetry is 
assumed, then the distribution function depends only on the coordinate 
normal to the plane x, the time t, and the direction cosine S = ~" i ;  Eq. (1) 
then simplifies to 

a~, ~f+l , 
+STx+ ~ =~j_, ds' ~,(x, s ,  t) + S(x, s, t) (3) 

where units have been chosen so that v = 1. 
The goal is to find exact expressions for the initial-value GFs, which, 

due to the linearity of the Boltzmann equation, immediately allow the 
distribution function and the density to be found for an arbitrary, plane 
symmetric source. The initial-value GF is defined to be the function 
Go(x, S, t; So) that solves Eq. (3) with a pulsed, monodirectional, planar 
source [i.e., S(x, S, t) = 5(x) 6(0)  6 ( S -  So)] and therefore satisfies the 
initial condition Go(x, S, t = 0; ~o) = So(x, S) = 5(x) 6(S - So) and bound- 
ary conditions 

Go(x, S, t; So) = O, t < 0 
(4) 

Go(x, S, t;/~o) = 0, Ix1 > t 

The density GF is defined as 

; i +1 po(X, t; ~o) - d~  Go(x, S, t; So) = 2~ ds Go(x, S, t; So) (5) 
- - 1  
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The angular G F  for a planar, isotropic source Go(x, #, t) is defined as the 
solution to Eq. (3) with S(x ,  ll, t )= �89  and the corresponding 
density G F  is 

f f+l p(x ,  t) - d{2 Go(x, #, t) = 27r dl~ Go(x, #, t) 
- - 1  

(6) 

Clearly 

f 
+ l  

Co(X, ~, t) = �89 @'  Co(X, u, t; ~') 
- - i  

and 

f 
+ l  

p(x ,  t) = 1 d , '  po(X, t; ~')  
1 

and the Fourier- and Laplace-transformed versions of these relations will 
be useful below in deriving the exact solutions. 

The details of the derivation of Go(x, #, t; #o) are given below, but 
only the final results for the other GFs are displayed, since the derivations 
for these are similar to the ones for Go(x, #, t; #o) and p(x ,  t) (the last given 
in ref. 21). 

Following the procedure in ref. 21, the Boltzmann equation is Fourier 
transformed with respect to the spatial coordinate x and Laplace transfor- 
med with respect to the time t, giving 

a f+~ 
= d k t ' G o { k , p ' , S ; # o ) + 6 ( # - # o )  (7) [ s - i k # + ~ r ]  Go(k, #, S; #o) 2 -1 

where 

CJo(k, I-t, s; I~o) = dt e "~ dx  e'kXGo(x, #, t; #o) 
oo 

(8) 

(s is a complex number with positive real part and k is real). It is assumed 
that the integral in Eq. (8) exists, and therefore the order in which the two 
integral transforms are applied is unimportant [it will be implicitly under- 
stood throughout that Ix[ ~< t; see Eq. (4)]. 

Formally, Go(x,/~, t;/~o) is found by inverting the two integral trans- 
forms: 

Go(x, #, t; #o) = 2r~i ~ ~o~ ds e s~ _ ~ ~-~ e-~k~Go(k, #, s; #o) 
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where a e R is to the right of all singularities of Go(k, #, s; #o) in the 
complex s-plane, and the order of integration is unimportant. 

Dividing Eq. (7) by [ s - i k # +  6] and then integrating the resulting 
equation over the whole solid angle leads to an expression for the double 
integral transform of po(X, t; #0), (21)'3 

2n 1 
~ o ( k , s ; # o ) = l _ ( a / k ) t a n  , [ k / ( s + a ) ] s _ i k # o + 6  (9) 

Plugging this back into Eq. (7) yields an expression for 
Go(k, #, s; #o) = G(ol)( k, #, s; #o) + Cunr #, s; #o), where 

G~ol)(k, #, s; #o) 

6Po(k, s; #o) 
4~z[s - ik# + a] 

6 

(lO) 

(11) 
2 { 1 - (a/k) tan - l [k / ( s  + a)] } [-s -- ik#o + 63 [s - ik# + a] 

and 

Cu,c(k, #, s; #o) = 6 ( # - # o )  (12) 
s - ikg o + a 

is the contribution from the uncollided particles, which can immediately be 
inverted to find 

Gunc(x, #, t; #o) = (I/t) e - ~  6 ( p - # o )  

The Laplace inversion of G(ol)(k, #, s; #o), 

1 fl '+i~176 ds e'@(ol)(k, #, s; #o) C ~o' ) ( k, #, #o)=~--~i _ ,~ 

(13) 

(14) 

can be performed by noting that in the complex s-plane G(ol)(k, #, s; #o) has 
(i) a simple isolated hydrodynamic pole at so(k )=k  c o t ( k / a ) - a ,  which 
exists only for [k[ ~<zca/2, (ii) a branch cut along the line joining 
s+ = - a  + ik and s_ = - a - i k ,  and (iii) two poles embedded in the cut 
at s ~ = - a + i k # o  and s 2 = - a + i k  # (see Fig. l). (21) We see that 
C(ol)(k, #, s; #o) arises entirely from scattering processes and Eq. (10) shows 
that the local density ~o(k, s; #o) acts as an effective source of particles that 
can be scattered into the state in question. It should be kept in mind that 

3 The factor of 1/2 in Eq. (15) of ref. 21 should be a 2. 
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c+ f I I  c_ 

+k 

 l(k) C 

--h 

Fig. 1. The complex s-plane, showing the singularity structure of the GF (~0(k,/1, s;/10) and 
the integration contours used in the Laplace inversion of the GFs. 

for the present problem without scattering only the states with # = # 0  
would be occupied. The complicated analytic structure of G~ol/(k, #, s; #o) 
reflects the various routes by which the particles initially (at t = 0) in the 
state/~ = Po can reach and be scattered out of the state # at the space-time 
point (x, t). For  example, Eq. (13) shows how the initial disturbance gets 
damped as particles undergo collisions and we see how this damping arises 
from the pole at s I in Eq. (12). As I will discuss in greater detail below, the 
poles at s~ and s2 in ~(01! describe, respectively, the depopulation of the 
state in question through the scattering out of the state and the pgpulation 
of the state through the direct scattering of particles from #o to /~. The 
branch cut describes the population of the state in question through the 
scattering of the original particles in the state #o through an intermediate 
state #' to the final state # at the space-time point (x, t). The hydrodynamic 
pole can roughly be thought of as providing the contribution to the state 
in question from the sum of all processes containing more than one inter- 
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mediate state. As we will see below, this term contains the usual diffusive 
relaxation behavior expected to occur at long times and long wavelengths. 

By closing the Bromwich contour in the left half-plane and then defor- 
ming the closed contour, the Laplace inversion for t > 0  reduces to the 
evaluation of two contour integrals, one around the isolated pole and the 
other around the cut, implying that G(ol)(k, #, t;/~0) breaks up into two 
pieces, G(0~)(k, #, t;/~o) = Gpole(k, #, t;/~o) + Gbo(k,/~, t; #o). 

The pole contribution is 

Gpole(k, #, t; #0) = ~ /  ds e'@(ol)(k, #, S; #o) (15) 
1 

which is easily evaluated using Eq. (11) and the residue theorem (C1 is the 
contour around the pole, see Fig. 1 ); performing the Fourier inversion then 
yields, after some manipulation, 

Gpole(X ,/,t, t; #o) 

= - -  dkexp - t  a - k c o t  
27[ •0 

( k )  cos(kx)[cot(k/a)-g#o] + sin(kx)(# + ~0)cot(k/a) 
X CSC 2 [cot2(k/a) _ Ukto)] 2 + cot2(k/a)(# +/~~ 2 

(16) 

The pole piece is clearly nonpropagating (diffusive rather than ballistic), 
which justifies the name hydrodynamic pole; it is also the asymptotic solu- 
tion, since its decay rate a - k  cot(k/a) [-which goes as (1/3a)k 2 for small 
k ~ aJ is slower than the decay rate a of the branch cut (see below) and 
uncollided pieces, which are the transport transient (propagating) parts of 
the solution. Because only modes with wavenumber Ikl ~< ~a/2 contribute 
to the expression for Gpole(X , ~, t; ~o),  the hydrodynamic pole piece con- 
tains no information about length scales 2 = 2n/k < 41, where l =- 1/a (recall 
that v - -1)  is the mean free path (MFP)  for particle scattering. In fact, 
Gpole(X , kt, t ; /~o) is the exact Chapman-Enskog solution (cf. ref. 8) for the 
distribution function. Since for the present problem the actual initial 
distribution does not lie in the hydrodynamic functional subspace, the 
Chapman-Enskog solution is not the whole story: If we define a projection 
operator by 

d~ 
/~--- f ys 

and a function W(k, I~) =- a[k cot(k/a)-  ikp]-l,  then a (Fourier-trans- 
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formed) initial distribution ~(k, g, t = 0 ) = S 0 ( k , # )  lies in the hydro- 
dynamic subspace iff the following identity is satisfied(8): 

~ o ( k , t ~ ) = { W P ( S o )  if k ~< na/2 otherwise (17) 

If the initial distribution satisfies this identity, then the Chapman-Enskog 
solution is the exact solution to the BE. If the initial distribution does not 
satisfy this identity, then the hydrodynamic pole solution is the exact solu- 
tion of a generalized hydrodynamic equation (and not the BE) containing 
terms to all orders in the gradient operator (see below) 

Is - so(k)] ~poj~(k, #, s) = S~ 

but with modified (not the actual) initial condition S; given by (in k space) 

{: (:t S~)(k, #) = k, #) csc 2 fi(WSo) if k ~< ~o" 
2 (18) 

otherwise 

which is the projection of the actual initial distribution So(k, #) into the 
hydrodynamic functional subspace. The hydrodynamic pole solution is the 
part of the exact distribution function that can be obtained by summing a 
perturbation series in powers of l / 2 ~  UT,  where 2 is the characteristic 
length scale and T the characteristic time scale of the disturbance. As 
we will see below, the part of the distribution function coming from 
~(o~)(k,~,s;#0) is nonperturbative in these expansion parameters. The 
expression for Gpole(x,/4 t; #0) can easily be numerically evaluated, but 
these results will not be presented here. 

The branch cut contribution to G(01)(k, #, s;/~o) is 

Gbc(k, fl, t ; / 2o )=~ l  / dseStG(ol)(k, tl, s;lZo) 
2~i c2 

where C2 is the contour around the branch cut and the embedded poles 
(see Fig. 1). The evaluation of this contour integral can be slightly sim- 
plified by using the identity 

, 1 { 1  1 } 
Is  -- ikl~o + a]  Is  - ikl~ + a]  ( ik ) (#  - I%) s - ikt~ + a s - ik#o + a 

If 

f ( k ,  12, s ) = - - ~ [ s - i k l ~ + a ]  -1 1 - - ~ t a n -  k 
- - 1  

(19) 
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G~ol)(k, #, s; #o) = - -  
2(# - #o) 

IF(k, #,s)-F(k, #o,S)]  (20) 

Due to the presence of the embedded pole, the Laplace inversion of 
#, 

1 f dseS@(k'g's) P(k, #, < 

must be performed with care (see ref. 14 for the details of how to handle 
this situation). The answer is 

f f + 1 e ikca 

2zc --1 [c( - #] [k- Zl((Z)] [k- z2(c()] 

+~ �9 ik., k + i ( a / 2 )  in ](1 + # ) / ( 1  - #)1 ) 
Zl~le . . . . . . . . . .  \ 

[k-Zl(#)][k-z2(#)] ] 
(21) 

where the first term comes from the line integral of the discontinuity of 
F(k, #, s) along the cut, and the second from the semicircular parts of the 
contour around the embedded pole at s = - a  + ik# (~ denotes Cauchy 
principal value). The discontinuity of the function 

I 1 _o" 1 k 1 

across the cut at s(c~) = -a+ikc~ ([e[ ~< 1) is 

where 

ak 

[k - z1(c()l [k - z2(o() l 

zl(a), z2(c~)-- ~ ___~-iln 

a { ___~ _ 2i tanh_X(a) (22) 

and this has been used in the derivation of Eq. (21). 
The Fourier inversion of the first piece of F(k, #, t) can now be done 

by interchanging the a and Fourier integrals (see ref. 21 for a discussion of 
the validity of this operation) and then making use of the Cauchy residue 
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theorem. The Fourier inversion of the second piece of F(k, #, t) can be 
obtained by applying the residue theorem directly. The original contour 
along the real axis can be closed in either the upper  or lower half  of  the 
complex k-plane (depending on the sign of x; for details see ref. 21). Then 
it is a simple mat te r  to pick up the contr ibut ion of the simple poles at zl 
and zz in Eq. (21) (see Fig. 2), with the result 

F(x,/~, t) = sgn(x) 2 e " ' ~  : |lxl/, 
dct 1 i 

o-(]x I 

~c ~o ~ - sgn(x)/~ 1 + 

~ t ) / 2  

x sin (a~ lxl~2 ~t) + e-~tJ(x, #, t ) (23) 

where 
1 - -  ].1 cs(x - -  I~t)/2 

J(x, #, t) =- sgn(x) cos [a~(2-  Ut) ] (24) 

z2( ) zl( ) 

C 

C~ 

z2( ) 

Fig. 2. The complex k-plane, showing the poles and integration contours used in the Fourier 
inversion of the function .~(k, ~, t). 
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if 0 ~< # ~< x/t ~< 1 or - 1 ~< x/t <~ # ~ O, and zero otherwise (since some of the 
functions considered here tend to be somewhat singular, there are some 
delicate points connected with the Fourier inversions; see ref. 21 for 
details). 

Then Eq. (20) implies that 

Gbc(X, #, t; #0) 

o 
- - -  I F ( x ,  # ,  t )  - F ( x ,  # o ,  t)] 

2 ( # - # 0 )  

O- e - ~ ' ~  (Ixl/, 1 -- ~ o(txd- ~,)/2 sin[o-rc(JxJ - :~t) /2]  
= sgn(x) - . de ~ - -~  

,o [c~- sgn(x) #]  [~ - sgn(x) #o] 

O-e-at 
+2 '#-#0 ' t  ~ [J(x, #, t ) - J ( x ,  #o, t)] (25) 

A few comments are in order: The branch cut contribution 
Gbc(X,# , t ;#0)  is a sum of damped (oce -~ traveling [depending on 
( x - a t ) ]  sine waves all with the same wavelength 2=4/o-, but with 
different velocities (0 to v =  1) in the x direction. Gbc(X , y, t ;#0)  and 
Gunc(X, #, t; #o) make up the transport transient part of the solution, 
decaying in time according to e - %  and, roughly speaking, these terms 
account for the contribution to the distribution function from those par- 
ticles that, although they may or may not have undergone some collisions, 
are still propagating ballistically over distances --~ vt; Gunc(x, #, t; #o) is the 
contribution of a subclass of these particles, namely those that have not 
experienced any collisions at all. On the other hand, the pole contribution 
comes from those particles that have undergone many collisions, and at 
times t~>r the bulk of the particles are in this class. The e ~ '= 
e x p { - 1 / ( r / t ) }  dependence of the transport transient part of the distribu- 
tion function precludes a power series expansion in r/t, since such a term 
has an essential singularity at r/t = 0, and we clearly see that the transport- 
transient, propagating parts of the distribution are nonperturbative in 
nature. 

The final result for Go(x, #, t; #o) is 

Go(x, #, t; #o) = [Gunc( x, #, t; #o) + Gbc( x, #, t; #o) 

+ Gpole(X, #, t; #o)] O(1 -- Lx]/t) (26) 

with Gu.c(X, #, t; #o), Gbc(X, #, t; #o), and Gpole(X , #, t; #o) given by 
Eqs. (13), (25), and (16) (the step function enforces the boundary condi- 
tion). In principle, these expressions can be numerically evaluated, but 
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these results will not be presented here. Using a completely different 
method (summing the multiple collision expansion), Ganapol (14) has 
derived a much less transparent expression for Go(x, #, t;/~0) in the form of 
a contour integral, but after some work one can show that his result 
reduces to the simpler form obtained above. (22) 

Before moving on, I would like to discuss the physical interpretation 
of the various pieces appearing in the final exact solution (26) (cf. Section 9 
of ref. 18). In the apparent complexity of the final solution it is important 
to keep in mind that the basic physics is simple: particles are propagating 
ballistically with a speed v = 1 until they collide and scatter on a time scale 
~. Thus, the initial distribution of particles with # = #o is depopulated with 
the decay products appearing at other/~, and the particles in these newly 
populated states in turn propagate and decay. The complexity of the final 
solution comes from the fact that starting with an initial distribution of 
particles in state kto at x = 0, there are many different routes for a particle 
to appear in state # at the space-time point (x, t). The function 
Gunc(X, #, t;#o) describes the particles that have not undergone any 
collisions, and all the particles in this class can be traced directly back to 
the initial distribution of particles in the state ~t=#0 at t = 0 .  The 
uncollided piece decays as e -~', which is physically sensible, since the 
initial distribution of particles is undergoing collisions on the time scale 
z = 1/a. The second, nonintegral piece of Gbc(X, ~, t;/.tO) [Eq. (25)] comes 
from the two poles sl and s2 embedded in the branch cut (see Fig. 1) and 
contains two pieces: one proportional to the function J evaluated at/~ (the 
state in question) and the second proportional to the function J evaluated 
at /~o (the state of the initial distribution). We interpret the first part 
[ocJ(x, 1~, t)] as describing the depopulation of the state in question due to 
scattering out of this state and the second part [ ocJ(x, ~to, t)] as describing 
the population of the state # due to the particles that are being scattered 
directly from #0 to iz. The integral term in Gbc(X , /A, t;/~0) describes the filling 
of the state/~ by particles that have scattered from the initial state #o to an 
intermediate state #' and then finally to the state #. Since any state/~' can 
serve as an intermediate state, there is naturally an integral over all 
possibilities. The hydrodynamic pole piece can then be interpreted as the 
contribution to the distribution function from the sum of all the contribu- 
tions arising from all the higher order processes where the particles in the 
initial state ~o reach the final state # by passing through more than one 
intermediate state. The part of the distribution function arising from this 
infinite sum contains a qualitatively new, diffusive rather than ballistic, 
behavior. In the late-time t ~> ~ and long-wavelength )~ ~> l limit, the pole 
piece dominates the particle distribution function as particles no longer can 
transmit their influence by direct ballistic propagation from one region of 
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the system to another separated by more than a few MFPs;  instead, 
the particles collide many times locally, executing a sort of random 
walk through the matrix of scattering centers. I will further discuss this 
interpretation below. 

In a similar way, the transform inversion of/5o(k, s; #o) [Eq. (9)] can 
be performed, resulting in 

po(X, t; #o) = Epun~(x, t; #0) + Pbc( x, t; #0) -k Ppole(X, t; #o)] O(1 -- Ixl/t) 
(27) 

where 

P,.c(x, t; #o) = 2ire ~t6(#ot-- x) (28) 

is the uncollided piece, 

pbc(X, t; #o) = pl(X, t; #o) + P2( x, t; #0) (29) 

comes from the branch cut contribution, with 

~lxl/, d a  1 - -  O {  "(Ix[ c~t)/2 
pl(x, t; #o) ~ ~ e  ~ ~ t ~  

!~o c~ - sgn(x) #o 1 + 

1 + ~ . [-a~c(Ixl - a t ) I )  

and 

pi(x, t; #o) = - 2 =  sgn(x) e "' 1 - #o "{~ ~o,)/2 
1 + # o  

{ , n '  + "  cos sin 

if 0 ~< #0 ~< x/t ~< 1 or - 1 ~< x/t <. #o <- 0, and zero otherwise; and finally the 
pole contribution is 

(. + ~/2 
Ppole(X,t;#o) = 2 |~o d k e x p { - t E a - k c ~  

( k ) ( k )  cos(kx) cot(k/a) + #o sin(kx) 
xcsc  2 g ~ cotZ(k/a )+#g (32) 

which is the exact Chapman-Enskog  expression for the density. 
Integrating Go(k, #, s; #o) over #o [see Eqs. (11) and (12)] leads to an 
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expression for the double integral transform 
GF Go(x, #, t), 

G0(k, #, t )=  a t a n - l [ k / ( s + a ) ]  
2k 1 - (a/k ) t an - l [k / ( s  + 0)] s - ik# + cr 

901 

of the isotropic source 

1 1 

2 [s - ikl~ + ~r] 

But then a little algebra shows that this expression is just (1/47r) tSo(k, s;/~) 
[see Eq. (9)J, and therefore 

Go(x, ~, t) - 1 po(X, t; ~) 

which comes from integrating the reciprocity relation Go(x, #, t ;#0)=  
Go(x, #o, t; I~) over/~o. 

Finally, the expression for p(x, t) (already obtained in ref. 21) is 

where 

p(x, t )=  [Pone(X, t) + pl(X, t) + ppo~o(X, t)] O(1 --PXl/t) 

pullc(x, t ) - - ~ e  -~' (33) 
t 

is the uncollided part, 

ppote(x, t) = 2e ~ dk exp{kt cot(kilt)} csc2(k/~r)(k/a) 2 cos(kx) (34) 
~0  

is the hydrodynamic pole piece and the exact Chapman-Enskog expression 
for the density, and 

p1(x, t )=  - 2  dc~ 

is the branch cut contribution (with the uncollided part subtracted out). 
The part ppol~(x,t) is the exact solution of the generalized 

hydrodynamic equation (cf. ref. 8), 

,, =l ~ - ~xZ) j n(x, t) = 0 (36) 

but with a modified initial condition, not the actual one p(x, 0 ) =  27~(x) 
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(the Bm are the Bernoulli numbers). The generalized hydrodynamic equa- 
tion is obviously an expansion in the MFP l oc 1/~, so that if the MFP is 
small compared with the characteristic length scale of the disturbance, then 
one might be able to get away with keeping only a few terms in the sum, 
but even by keeping terms to all orders in the spatial derivatives the solu- 
tion will completely miss the nonperturbative, propagating modes coming 
from punt(x, t) and pl(x,  t). 

It is interesting to see explicitly how the generalized hydrodynamic 
equation arises for this specific problem (cf. ref. 8). The idea is to find a 
function having only a simple pole, which, when transformed back to (x, t) 
space, reproduces Ppole(X, t). The right function is 

2re csc2(k/a)(k/~r) 2 
~(k, s ) -  (37) 

s - H(k)  

where H ( k ) -  - ~  + k cot(k/~). Then by Fourier and Laplace transforming 
[s - H(k)]  x Eq. (37), it is easy to show that n(x, t) satisfies the generalized 
hydrodynamic equation with initial condition n(x, 0) = ~ l[~0(k)], where 

-1 denotes the Fourier inversion operator and ~o(k)~-2re csc2(k/a)(k/~) 2 
for Ik[ ~< zca/2 and 0 otherwise. The simple diffusion theory (Navie~Stokes)  
result can be recovered by expanding all quantities to lowest nonvanishing 
order in k (or lowest order in the spatial derivatives) in Eq. (37) and 
reverting to (x, t) space (cf. ref. 16): 

0 ~ 
[ ~ - D ~ x 2 1 n ( x ,  t ) = 0  (38) 

where D =  1/3o- is the diffusion constant. As shown in ref. 8, at the 
Navier-Stokes level of description the hydrodynamic moment of the initial 
distribution can be used as the initial condition for solving the 
hydrodynamic equation, since the corrections appear only at higher orders 
in an expansion in k/~ ~ l/2 (this simplification breaks down at the next 
level of description, that of the Burnett equation). With this simplification 
in mind we can solve the simple diffusion equation(38) with the 
hydrodynamic moment of the actual initial distribution as appropriate 
initial data to find the usual diffusion theory result, 

n(x, t) ~ (4~zDt) - 1/2 e - -  x 2 / 4 D t  (39) 

In general, however, we see that due to the coarse graining, the 
hydrodynamic moment of the initial distribution function p(x, 0) = 2 ~ ( x )  
is not the correct initial data for the contracted (generalized hydrodynamic) 
description (36) (cf. ref. 8). We reemphasize, however, that if the initial dis- 
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tribution lies in the hydrodynamic subspace (see earlier discussion), then 
the density obtained from the generalized hydrodynamic equation (with the 
hydrodynamic moment of the initial distribution used as initial conditions) 
is the exact solution for the density as would be obtained from the exact 
solution to the BE. I postpone a further analysis of the exact solution for 
the density until the next section, where I discuss the decay of localized 
disturbances in a spherical geometry. 

The full expression for p(x, t) can be evaluated numerically, and where 
they can be compared the results are in perfect agreement (22) (to within the 
stated accuracy) with the numerical results obtained (in a completely 
different way) using the multiple collision method. (15'16~ Presentation of 
numerical results, however, will be restricted to the more physically 
interesting spherical symmetry problems discussed in the next section. 

3. S P H E R I C A L  S Y M M E T R Y  T R A N S P O R T  P R O B L E M S  

Although the plane symmetry problem can be completely solved 
(Section 2), it is not as physically interesting as the more difficult spherical 
symmetry problem, which is closer to the situation envisaged in the Intro- 
duction: a pulsed disturbance initially localized in some small region of a 
large system. 

It is not easy to adapt the standard solution techniques to solve the 
spherical symmetry problem, but a density GF can immediately be 
obtained from the plane symmetry density GF [now denoted by Ppl(X, /)] 
derived in the previous section. (21) 

The distribution function due to an isotropic, but otherwise arbitrary, 
spherically symmetric source is given by the solution to the spherically 
symmetric version of Eq. (1): 

~ 1_~2 ~, a[.+l , 
+ kt + + atp dl~' O(r, # ,  t) + S(r, t) (40) 

r ~ =2J  1 

where r is the radius, and # is now defined to be the direction cosine of the 
velocity with the position vector. 

If Pss denotes the density due to an isotropic, pulsed shell source 
located at r=ro and triggered at t= to  [i.e., S(r, t )=(1 /4~r2 )3 ( r - ro )  
3( t - to ) ] ,  then, as discussed in ref. 21, 

1 
Pss(r, t; ro, to)= ~ [ppl(lr-rol ,  t - t o ) - p p i ( r + r o ,  t - t o )  ] (41) 
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and the linearity of the Boltzmann equation implies that the density ~b(r, t) 
due to an arbitrary isotropic source S is given by 

~b(r, t ) = 4 ~  f dr o r~ f dto Pss(r, t; ro, to) S(ro, to) (42) 

In particular, the density due to an isotropic, pulsed point source 
[i.e., S(r, t) = (l/4~r a) 6(r) 6(t)] can be found from po(x,  t) using 

1 (Opp,(X, t)) 
pp,(r, t) = - ~  \ ~x ~=~ (43) 

which can be evaluated, yielding the following closed form expression: 

[pu~o(r, t) + ppt(r, = t) + pbc(r, t) pt Ppt(r, t) pt pt + Ppole(r, t)] 0(1 --r/t) (44) 

where 

1 
pt - e ~'fi(r- t) (45) puoc(r, t) - g - ~  

is the uncollided contribution, 

r t + r  
ppt(r' t ) = ~ r t e  ~tln t - - r  (46) 

is the first collided piece (due to the particles that have undergone exactly 
one collision), 

pt = - - e  or |  de ~ rc3--3~ln 2 pbo(r, t) 87rr .o 

x cos L a ~ ( 7  ~t) ] ,  -- In ,l----~l+c~ (3~z2- in 2 1--c~'+c~ ,/~'slnLF~'(r-- ~t , ]  ] 2  JJ~ 

(47) 

is due to the branch cut, and finally 

pt Ppol~(r, t) = (a/rrr) ( + ~/= dk exp{ - t [a  - cot(k/o-)] } csc2(k/a)(k/~) 3 sin(kr) 
~0 

(48) 
is the hydrodynamic pole contribution. 
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Before presenting some numerical results based on the above exact 
solutions, I will first make a few comments. With the exact results for the 
density due to a point in hand, we are in a position to understand what is 
happening physically. The exact solutions to the isotropic, pulsed point 
source problem consists of four distinct parts: pt pu,c(r, t), p~t(r, t), and 

pt  pbo(r, t) are the transport transient parts of the solution, decaying rapidly 
on the time scale r, so that at late times only the slowly decaying, 
hydrodynamic pole part of the solution ppto,e(r, t) contributes significantly 
to the density. Again the basic physics is the same as discussed earlier: The 
original particles in the point burst propagate out while undergoing colli- 
sion on the time scale ~, and the products of the collisions appear in other 
states. The part pt Punc(r, t) accounts for the part of the density due to those 
particles that have not yet undergone any collisions. In the absence of 
collisions there would be a delta-function shell propagating out with speed 
v=  1, and with collisions there is still such a shell, but it is being 
depopulated as particles collide. The part p~t(r, t) describes the part of the 
density due to those particles that have undergone exactly one collision, 
and this piece contains a weak logarithmic singularity right at the 
wavefront, which reflects the fact that these first collMed particles come 
from the decay of the initial delta function shell. Clearly, pt pbc(r, t) and 

pt  Ppole(r, t) must come from the sum over all terms containing the contributions 
from the particles that have undergone more than one collision. Again I 
emphasize that the complexity of these two pieces comes from the existence 
of many different routes by which a multiply collided particle can come to 
contribute to the density at the space-time point (r, t). This infinite sum 
contains a diffusive, or hydrodynamic, piece Pt Ppole(r, t) that decays slowly 
and contains no traveling wave component; this is the exact Chapman-  
Enskog expression for the density. In the limit r >> l and t >> z this pole 
solution reduces to the simple diffusion theory result Pdifr discussed below. 

Some more insight into the pole solution can be obtained by recalling 
the following "derivation" of the simple diffusion equation from the BE. (1) 
If we expand the exact distribution function in spherical harmonics and 
truncate after the first two terms, we get 

~(r, O, t ) =  n(r, t ) +  3~. J(r, t) (49) 

where 
^ 

,,(r 0 , , ,  

is the density and 

822/58/5-6-8 
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J(r, t) = f dr2 ~0(r, ~, t) 

is the current density. Then, by taking moments of the BE with respect to 
1 and ~, we obtain two coupled equations for n and J, which in the limit 
r >> l and t >> r can be solved to find Fick's law J = - D V n  and the simple 
diffusion equation for the density n, which is the Navier-Stokes level of 
description. If we had instead kept only the first term in the spherical har- 
monic expansion of the distribution, we would have found the simple equa- 
tion Otn(r, t )=  0, the Euler equation, which implies that at this (lowest) 
level of description the density does not decay at all, and this gives us a hint 
as to the origin of the slow decay in the exact pole solution. 

With this prelude, we can get some more insight into the orgin of the 
slowly decaying diffusion mode described by pptole(r , t). Within coarse- 
grained spatial regions of length scale ~ l, collisions very effectively smooth 
out large anisotropies (wrt ~) in the distribution function, but neighboring 
regions will end up with slightly different densities and current densities. 
Thus, there will be a net flux of particles through the boundaries of these 
coarse-grained regions, and this will tend to decrease the density in the 
regions where there is a surplus and increase the density where there is a 
deficit. The smoothing out of the local anisotropies in the distribution function 
takes place on the rapid time scale r, but the diffusive change in the density 
takes place only due to the slight imbalances from one coarse-grained 
region to another, and this diffusive relaxation takes places on a much 
slower time scale, which is in fact infinite for the k = 0 (homogeneous 
mode). This diffusive transport should be contrasted with ballistic transport 

pt contained in the other three terms, Puno(r, t), p~t(r, t), and pt pbc(r, t), which 
decay on the fast time scale ~ and come from the highly anisotropic, nearly 
ballistic, part of the distribution function. (The free streaming of the initial 
point burst of particles is highly anisotropic, since all the particles are 
traveling along their radius vectors.) Although the basic qualitative 
ideas--connected with the existence of transport transients and asymptotic 
solutions--exemplified by the above exact results are well known in transport 
theory, the Lorentz model calculations allow us to replace suggestive 
handwaving with concrete results. 

The above expressions can easily be numerically evaluated, and where 
they can be compared, the results for Ppt( r ,  t) are in perfect agreement (to 
within the stated accuracy) with the results obtained using the multiple 
collision method. (16'22) One of the advantages of the present solutions is 
that they can easily and accurately be numerically evaluated very close to 
the sharp wavefront discontinuity. 

In Figs. 3a 3f the exact solution to the pulsed, point source problem 
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Ppt(r, t) is plotted as a function of r (measured in MFPs)  for a sequence of 
times t (measured in MFTs). Also plotted are 

Pdiff(r, t ) =  2re _ r2/4 D t 
(4g D t )  3/2 e (50) 

the diffusion theory (hydrodynamic) result, and in some of the figures the 
hydrodynamic pole solution pt Ppole(r, t) [gq. (48)]. 

The sequence of density profiles vividly depicts how at early times 
(t <~r) the transport transients make a large contribution to the density, 
especially near the sharp, shell-like wavefront moving out "ballistically" as 
r oct. The hydrodynamic pole contribution plays a large role even at inter- 
mediate times t ~ r, but, as it simply falls off monotonically with increasing 
r, it has no interesting structure. As expected, at long times the pole con- 
tribution dominates, with the exact result finally relaxing into the simple 
diffusion result, which expands outward as x/t-, while the shell-like 
wavefront quickly damps out for times t ~> ~. If there were no collisions, 
there would only be a delta-function shell propagating out from the origin, 
so that collisions radically change the nature of the dynamics. Further- 
more, a simple RTA to the collision integral [-see Eq. (2)] would only give 
rise to an expanding, exponentially decaying delta-function shell, which 
clearly cannot account for the approach to hydrodynamics. 

From Figs. 3a-3f, we see that at early times the hydrodynamic pole 
contribution underestimates both the exact result and the simple diffusion 
result. The simple diffusion solution contains the unphysical result that the 
density is finite even for r > t, in contrast to the exact result, which is dis- 
continuous at r = t and identically zero for r > t. Since both the exact and 
diffusion results conserve the total number of particles, the diffusion result 
needs those particles in the unphysical region to get the correct total 
number of particles. We also see that the exact pole contribution eventually 
crosses over the diffusion result (see Fig. 3c) in its evolution toward the 
exact result. At very early times, t ~ r, both the diffusion result and the 
exact result are flat right up to the wavefront, and the diffusion result can 
underestimate the exact result by many orders of magnitude (e.g., 3 at 
t = 0.01 ). 

By t = 5 (Fig. 3e) the density has more or less relaxed into the simple 
diffusion form, with the expected result that at late times the region of 
greatest discrepancy between the exact and diffusion results is near the 
origin (this is true because the diffusion result is obtained from the exact 
pole solution in the limit r ~> 1 and t>> z). Near the edge of the wavefront 
at late times the diffusion result actually appears to slightly o v e r e s t i m a t e  
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the exact  result. By t =  18 (Fig. 3f) the exact  result  has clearly lost  its 
p r o p a g a t i n g  na ture  and  the width  of the expand ing  d i s tu rbance  is no 
longer  oct. The small  devia t ion  near  the origin gets d a m p e d  out  comple te ly  
for t ~> z. 

The densi ty  for an a rb i t ra ry ,  t ime- and  pos i t ion -dependen t  source can 
be ob ta ined  using Eq. (42) [ the  source mus t  be turned  on, S(r,  t ) =  0 for 

t < 0, and  localized,  S(r,  t) = 0 for r > rm,x]. As an i l lust ra t ion,  Figs. 4a -4e  
and  5 show the densi ty  due to a d is t r ibuted ,  pulsed source, which is jus t  an 
ini t ia l-value p rob l em with init ial  condi t ions  for the densi ty  

~b(r, 0) = (1 for r ~ r m a  x (51) lo otherwise 
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Fig. 4. The exact result for the density profile (solid line) due to an extended (flat), pulsed 
source of radius rmax=0.1 for a sequence of times t=0.1 (a), 1 (b) 2 (c), 3 (d), 5 (e). 
Dotted line in panel (b) is from a numerical computation using the TIMEX transport code 
(see text). (Time t is measured in MFT, particle velocity v = 1, and position r is measured in 
MFP.) 
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The width of the initial distribution introduces a new length scale r . . . . .  

and we might expect qualitatively different results depending on whether 
rma x < or > 1 (units in MFP).  Intuitively, we might expect that a shell-like 
wavefront (similar to the one found in the point source problem) can form 
for roughly rma x < 1, since then the system is still in the kinetic regime when 
the wavefront shell is beginning to emerge from the region of the initial dis- 
turbance, but not form for (roughly) rmax > 1, since the system will essen- 
tially be in the hydrodynamic regime at the time the wavefront shell ought 
to be emerging. These ideas are borne out by comparing the sequence of 
density profiles displayed in Figs. 4a-4e and Fig. 5. 

I first discuss the results for rmax=0 .1~ l .  These results are 
qualitatively the same as in the point source problem, but now the shell- 
like wavefront propagating out at a speed approximately equal to the speed 
of the particles is more highly visible. At the earliest time t = 0.1 (Fig. 4a) 
only the slightest hint of the formation of a shell structure can be seen, 
while at t = 1 the shell structure is prominent and well developed. In 
Fig. 4b, I have also plotted the density found by solving the Boltzmann 

!t t = 3  

Fig .  5. 

\ 
0,0 ~ 1'.0 l'.5 2'.0 2'.5 3,0 3'.5 4'.0 4.5 

PGdtus r MFP 

The exact density profile for an extended, flat pulsed source with rma x = ] for time 
t = 3; n o  she l l - l i ke  w a v e f r o n t  is v i s ib le  h e r e ,  n o r  a t  e a r l i e r  o r  l a t e r  t i m e s  e i the r .  
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equation numerically using the transport code TIMEX, (23) which employs 
standard numerical methods to solve the integrodifferential equation. Even 
for fairly fine space and time meshes (0.01 MFP and 0.005 MFT, respec- 
tively) TIMEX has an extremely difficult time following the sharp 
wavefront, although the code does well in the region behind the shell. As 
time progresses (see Figs. 4c-4e) the sharp wavefront structure begins to 
get damped out as collisions depopulate the shell, and for times t > 5, the 
shell has all but disappeared and the system has just about completely 
entered the hydrodynamic regime. 

In Fig. 5, I show the results for rma • = 1 and t = 3. In line with the 
earlier discussion, no shell structure appears to form. 

4. D I S C U S S I O N  OF THE E V O L U T I O N  OF A LOCALIZED 
D I S T U R B A N C E  

The results obtained in the previous section lead to some general 
conclusions concerning the temporal evolution of a localized disturbance. 

One of the important results is that the qualitative character of the 
density profile depends critically on the ratio rmax/MFP, where in general 
rma • is the characteristic length scale of the initial disturbance. For roughly 
rma x< MFP a sharp ballistic wavefront shell structure develops, super- 
imposed on top of a smooth background. The structure persists for a few 
MFTs, but then quickly dies out as the disturbance relaxes into a diffusive 
form; this shell structure is due to the transport transient parts of the density. 
Also, at early times the hydrodynamic pole piece is a w o r s e  approximation 
to the exact result than the simple diffusion result, while at later times the 
reverse is true, and all three solutions converge for t ~> ~. 

For roughly rma x > MFP no sharp wavefront shell structure develops, 
and there is only a smooth, monotonically decaying density profile. 

The results for the point source problem show explicity how badly 
both the RTA solution (a delta-function shell for a point source) and the 
exact solution to the generalized hydrodynamic equation approximate the 
exact solution for a localized disturbance in the kinetic regime: the 
hydrodynamic approximations fails completely to account for the sharp 
ballistic shell that develops in some circumstances, and the RTA partially 
accounts for the shell, but not the smooth background and the approach 
to hydrodynamics. The appeal of the present results is that general 
qualitative ideas concerning the transition to a hydrodynamic description 
after a severe disequilibration have been backed up by explicit calculations. 
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5. RESPONSE OF A C H A R G E D  GAS TO A C O N S T A N T  
APPLIED ELECTRIC FIELD 

An important model problem in charged particle transport concerns 
the response of a uniform system to an externally applied, constant electric 
field E. This might model carrier transport in a semiconductor, for exam- 
ple. If only elastic scattering processes are considered (say carrier-impurity 
scattering), then the simple Lorentz gas BE can be used to describe trans- 
port phenomena in these systems. 

As emphasized by Mattis et al., (24) if there are no inelastic scattering 
processes, then it is essential to solve the full time-dependent problem, 
because there is no steady-state solution. Even though there is no steady- 
state solution, it can be shown (24) that (i) the time-dependent BE implies 
that Ohm's law [j = ac E, where j -- ~ dBp p~(p, t) is the current density] is 
obeyed after a transient period during which the current is built up and (ii) 
the Joule heating expression for the energy density O U/~t = E . j  holds for 
all times; in addition, the BE leads to a dc conductivity with the usual 
Drude form, ac = ne2z/m (where n is the density of particles), so it is clear 
that the simple Lorentz gas BE contains many realistic features, making it 
a worthwhile model to study. 

Unfortunately, solving even this simplified model is very difficult, and 
there are few exact solutions. Ganapol and Boffi (25) showed that with a few 
restrictions the applied field problem can be mapped onto the spherical 
geometry localized disturbance problem. Then, using the multiple-collision 
formalism originally devised for the latter problem, they were able to solve 
some simplified isotropic scattering, applied field problems. More recently, 
Mattis et al. have solved the applied field problem in the highly anisotropic 
forward/backscattering limit (particles can only scatter from ~ +_~), 
which allowed the BE to be reduced to a partial differential equation. The 
purpose of this section is to show that the exact solutions to the localized 
disturbance problem derived above can be used to find new exact solutions 
to the isotropic scattering, applied field problem. 

In the presence of a constant, uniform electric field the BE for a 
spatially uniform, charged Lorentz gas becomes (assuming isotropic scat- 
tering) 

f dP' A - -  3 47r ~O(p, p', t) + S(p, ~, t) (52) 

where F = eE, p = my is the momentum, and p = IPl. By going to spherical 
coordinates in momentum space and choosing the z-axis along E, the BE 
(52) becomes 

00 + F/~ ~ --/z2 ~3~b w f +2 , ~--~p+F 1 P g # + v a ~ = ~ j _ l  d l ~ ' t ~ ( p , # , t ) + S ( p , t )  (53) 
O-7 
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where # is now defined to be the direction cosine of the velocity with the 
electric field vector (i.e., p~ = p#). The system is taken to be in global ther- 
mal equilibrium for times t < 0, and the force is turned on at t = 0. A com- 
parison of Eqs. (40) and (53) shows that the applied field problem maps 
onto the localized disturbance problem provided that r ~ p, v ~ F (in the 
gradient terms only), and 2 = va(v) is independent of v. 

In contrast to what happens in the localized disturbance problem, the 
magnitude of the momentum (p) now enters in a crucial way: the applied 
force couples states with different energies, but because the system is 
initially assumed to be uniform, there is no longer any spatial dependence 
to the problem. In the localized disturbance problem the distribution func- 
tion spreads out in real space as the particles stream along, whereas in the 
present problem the distribution function spreads out in momentum space 
as the constant force accelerates the particles. 

Dimensionless time and momentum variables can be defined by t ~ t2 
and p ~ p2/F, and a modified source term by S ~ S/2. Then, given the 
source term, the density of particles with momentum magnitude p (inde- 
pendent of direction), ~b(p, t )=~+{ d/~' O(p, #', t), can be found from the 
localized disturbance result (42), 

~b(p, t) = 4~ f dp'p '2 f dt' p~s(p,t; p ' , t ' ) S (p ' , t ' )  

where Pss denotes the density due to an isotropic, pulsed shell source in 
momentum space located at p = p'  and triggered at t = t '  [i.e., S(p, t)= 
(1/4~p '2) 6(p - p') 6(t - t ' )] ,  where 

1 
P,s(P, t; p', t ' )= ~--2~-2_,_ [Pp,(IP- P'I, t -  t ' ) -  ppl(p + p', t -  t')3 

,~Jcp p 

with Ppl(P, t) the plane symmetry density GF defined in Eqs. (33)-(35). 
To get the full distribution function, the BE (52) is rewritten (in the 

dimensionless time and momentum variables, and with the modified source 
term) as 

+ ~p~ + 1 ~(p, t) = Q(p, t) (54) 

where Q(p, t)=-�89 t)+ S(p, t) is a known source term (the density is 
assumed to have been calculated in the manner described above). 

_2,1/2 /,) and ~ O(P• Pz, t). If p =  (p• p:), then Q(p, t) = Q( (p2 + pzl , = , 
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To solve Eq. (54), it is convenient to introduce the GF G(p, ,  t; P'z, t ' )= 
G(p~ - p'~, t - t'), which satisfies 

~ + ~ p  +1  G(pz, t ; p ' ~ , t ' ) = 6 ( p ~ - p ' ) 6 ( t - t ' )  (55) 

and has the form 

G(p~, t; p'~, t') = e (,-c)3(p~ _ p ,  + t - t') 

Then the linearity of Eq. (55) implies that the solution to Eq. (54) is 

O(p• p~, t) = f dt' f dp'~ G(p~, t; p'~, t') Q((p'~ + p,2)~/2, t ') 

= f dt' e -(t "~Q({p~ + [p'~-  ( t -  t ' ) ]  2 } 1/2, t') 

If there were no scattering, then for an initial value problem with the 
source S(p,  t) = 6(t) So(p) [i.e., O(p• Pz, t = 0) = So(p)],  the solution to 
Eq. (54) reduces to O(p• p~, t) = So((p~ + [ P z -  t]2)1/2), which makes 
perfect physical sense, since the number of particles with p =  (p• Pz) at 
time t is given by the number of particles that started out at time t = 0 with 
momentum p z - F t  [the particles are simply accelerating, so that 
pz(t) = pz(O) + r t ] .  

If the system is in thermal equilibrium for time t < 0  with the 
Maxwell-Boltzmann distribution ~ o ( p ) = C e x p ( - p 2 / 2 m k B T ) ,  then the 
solution for times t > 0 after the force is turned on is 

O(P, t) = 4~C f dp' p'2pss(p, t; p', 0) exp( --p'Z/2mkB T) (56) 

and 

ff(P~,Pz,  t ) =  dt' { e x p [ - ( t - t ' ) ]  ~b({p~ + [ p ' z - ( t - t ' ) ] 2 }  t/2,t')} 

+ C exp( - t)exp( --p~/2rnkB T) exp[ - (Pz - t)2/2mkB T]  

(57) 

The density can be obtained numerically, but I shall not present any 
detailed numerical results here. The qualitative nature of the solution, at 
least at long times t >> z, is just that obtained in ref. 24: if one plots the 
distribution function ~(p• Pz, t) for fixed p• as a function of Pz, then at 
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Fig. 6. Qua l i t a t ive  form for the d i s t r ibu t ion  function O(B• P_,, t) as a function ofp~ for fixed 

p• for t imes 0 < t I < t 2 long  after the t r anspor t  t rans ients  have  died out, tl ~> r. 

times long after the transport transients have died out one expects that an 
initial Gaussian Maxwell-Boltzmann distribution gets squashed and 
spreads out as a function of Pz with a slight asymmetry developing (which 
gives rise to a finite current) as the gas heats up (see Fig. 6). A problem 
similar to the one studied in this section has been discussed in great detail 
in ref. 24, and since the present results appear to be qualitatively the same 
as the ones obtained there, ! refer the reader to this reference for a more 
complete discussion of the ramifications of the exact solutions to the BE for 
a charged gas. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

I have presented some exact solutions to two important classes of 
problems in nonequilibrium statistical mechanics. My aim was to use the 
relatively simple Lorentz gas model as a testing ground for studying the 
relationship between kinetic theory and hydrodynamics in a setting where 



920 Palmeri 

exact results could be obtained. I observed that the exact solutions are 
relatively complicated even for the simple Lorentz gas model, with trans- 
port transient propagating modes appearing as well as a generalized 
diffusive, or hydrodynamic, part that reduces to the well-known simple 
diffusion theory result at long times and long wavelengths. Using the exact 
solutions, I have generated a sequence of density profiles that follow a 
pulsed, localized disturbance from an early-time kinetic regime where the 
propagating parts of the solution are the most important through a cross- 
over regime t ~ z to a macroscopic hydrodynamic regime, where the simple 
diffusion equation gives an accurate description of the evolution of the non- 
equilibrium density. Furthermore, I have shown how simplified approxima- 
tions such as hydrodynamic treatments and RTAs to the collision integral 
fail to account for important features of particle transport. The exact 
results for the Lorentz gas problems were then used to gain some insight 
into the general problem of the decay of a localized disturbance in a 
system initially in global equilibrium and the subsequent approach 
to hydrodynamics. In particular, I have shown graphically how non- 
hydrodynamic shell-like structures can form under certain initial condi- 
tions; I have also shown how long and to what extent they can survive 
before they are more or less completely damped out by collisions. I have 
also obtained some exact results for the nonequilibrium particle distribu- 
tion induced by an applied electric field turned on at t = 0. 

The relative paucity of exact solutions to even simplified model 
Boltzmann transport equations makes any new exact solutions a valuable 
contribution to the treasure chest of exactly soluble problems. This is espe- 
cially true for the types of difficult time- and space-dependent problems 
treated here (i.e., the approach to hydrodynamics), for which, to my 
knowledge, there are no other known exact results (cf. ref. 19a). In the field 
of transport theory there is an abundance of research on the formal mathe- 
matical properties of kinetic equations on the one hand, and a body of 
semiheuristic, often inadequately justified, work on the transport properties 
of real, complicated physical systems on the other, and I believe the exact 
results presented here can be useful in attempts to bridge this gap (cf. 
ref. 18). I hope that the exact results discussed here have helped the reader 
to gain some mathematical and physical insight into the general problem 
of how a macrodescription of nonequilibrium states of matter evolves from 
a micro one. 
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